# Load inbuilt datasets
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# Load the Iris flower dataset:
iris = datasets.load_iris()
X = iris.data
y = iris.target
print(iris.data)
print(iris.target_names)
print(iris.target)
import pandas as pd
pd_Frame=pd.DataFrame(iris.data,columns=iris.feature_names)
pd_Frame
SAMPLE DATASETS FOR
CLUSTERING
#import Libraries
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
#Create Clusters
X, y = make_blobs(n_samples = 200,
# two feature variables,
n_features = 3,
# three clusters,
centers = 3,
# with .3 cluster standard deviation
cluster_std = 0.3,
# shuffled,
shuffle = True)
#Plotting the Clustered Data
plt.scatter(X[:,0],
X[:,1]
)
SAMPLE DATASETS FOR
CLASSIFICATION
#import Libraries
from sklearn.datasets import make_classifier
import matplotlib.pyplot as plt
#Create Clusters
X, y = make_ classifier(n_samples = 200,
# two feature variables,
n_features = 10,
# Useful column for the classifier
n_informative = 5,
# Unused column for the classifier
n_redundant = 5,
# Number of target classes
n_classes = 3
# Ratio of data shuffled among the classes,
weights = [0.2,0.3,0.5] )
#Plotting the Clustered Data
plt.scatter(X[:,0],
X[:,1]
)
SAMPLE DATASETS FOR
CLASSIFICATION
#import Libraries
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
#Create regression
X, y = make_ regression(n_samples = 200,
# two feature variables,
n_features = 3,
# Noise
noise = 0.2 )
#Plotting the Clustered Data
plt.scatter(X[:,0],
X[:,1]
)